

PyWPS Ansible Playbook

[image: Documentation Status]
 [http://ansible-wps-playbook.readthedocs.org/en/latest/?badge=latest][image: Travis Build]
 [https://travis-ci.org/bird-house/ansible-wps-playbook][image: GitHub license]
 [https://github.com/bird-house/ansible-wps-playbook/blob/master/LICENSE.txt][image: Join the chat at https://gitter.im/bird-house/birdhouse]
 [https://gitter.im/bird-house/birdhouse?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]
Description

Use Ansible [https://www.ansible.com/] to deploy a full-stack PyWPS [http://pywps.org/] service.

Warning

This playbook is under development and is currently only used to deploy PyWPS applications from Birdhouse [http://bird-house.github.io/] like Emu [http://emu.readthedocs.io/en/latest/].

Introduction

PyWPS Ansible Playbook can completely provision a remote server to run the full stack of PyWPS [http://pywps.org/], including:

	Conda [https://conda.io/miniconda.html] to manage application dependencies.

	Nginx [http://wiki.nginx.org/Main] as Web-Server.

	Supervisor [http://supervisord.org/] to start/stop and monitor services.

	PostgreSQL [https://www.postgresql.org/] optional database used for job logging.

It will install a PyWPS application on a single host.
Nginx, Supervisor and miniconda are installed on the system.
The PyWPS application is fetched from GitHub and dependencies are installed into a Conda environment.

See the docs subdirectory or readthedocs [http://ansible-wps-playbook.readthedocs.io/en/latest/] for complete documentation.

Getting started

	Requirements
	Target Server

	Local setup

	Quick setup

	Ansible role requirements

	Remote setup

	Deploy a PyWPS Application
	Prepare

	Get the Playbook

	Customize Configuration

	Running your playbook locally

	Live host deployment
	Creating a host file

	Running your playbook

	Configuration
	Edit custom.yml

	Use Conda to build identical environments

	Use sqlite Database

	Use PostgreSQL Database installed by playbook

	Use external PostgreSQL Database

	Install multiple PyWPS applications

	Use HTTPS with Nginx

	Extend PyWPS configuration

	Use WPS with load-balancer configuration

	Testing
	Test Ansible with Vagrant

	Alternative: use Vagrant without provisioning

	Examples
	Install Emu/PyWPS on localhost

	Install Slurm cluster

	Install Emu/PyWPS on cluster

	Install the rook/PyWPS for subsetting on cluster

	Changes
	0.4.0 (2020-09-22)

	0.3.0 (2020-01-20)

	0.2.3 (2020-01-08)

	0.2.2 (2019-09-27)

	0.2.1 (2019-02-05)

	0.2.0 (2018-12-06)

	0.1.1 (2018-09-19)

	0.1.0 (2018-09-05)

	Ansible Hints

	Links

Requirements

	Target Server

	Supported platforms

	SSH access; sudo

	Local setup

	Quick setup

	MacOS

	Conda

	Ansible role requirements

	Remote setup

Target Server

Supported platforms

At the moment, we are testing with CentOS 6/7 and Ubuntu 18.04.

SSH access; sudo

Beyond the basic platform, the only requirements are that you have ssh access
to the remote server with full sudo rights.

For local testing via virtual machine, any machine that supports VirtualBox/Vagrant
should be adequate.

Local setup

Note

You will need Ansible only on your client which you use for running the Ansible scripts.
The server can be installed remotely.

On your local machine (the one from which you’re controlling the remote server),
you will need a recent copy of Ansible (>=2.7). docs.ansible.com [http://docs.ansible.com/intro_installation.html]
has thorough installation instructions.

Warning

Don’t us your OS package manager to install Ansible; you may get an unusably out-of-date version.

You will also nearly certainly want git, both for cloning the playbook and for version-controlling your own work.

To clone the playbook, use the command:

$ git clone https://github.com/bird-house/ansible-wps-playbook.git

Quick setup

In the following we give some installation examples.

MacOS

Use brew [https://brew.sh/] to install Ansible:

$ brew install git
$ brew install ansible
check version
$ ansible --version
ansible 2.7.2

Conda

You can use Conda [https://conda.io/docs/user-guide/install/index.html] to install Ansible. Conda is available for Linux, MacOS and Windows.

$ conda install -c conda-forge ansible
check ansible version
$ ansible --version
ansible 2.7.2

If you don’t have Conda installed, the fastest way is to install Miniconda [https://conda.io/miniconda.html], preferably the Python 3.x version.

Ansible role requirements

We have a several Ansible role dependencies which you may fulfill via Ansible Galaxy with the command:

$ ansible-galaxy -r requirements.yml -p roles install

This should be executed in your playbook directory.
Downloaded requirements will be dropped into the roles directory there.

Remote setup

Ansible requires that the target server have a recent Python 2.x on the server.
Newer platforms (like Ubuntu Xenial and later) may not have this activated on pristine new machines.

If you get connection errors from Ansible, check the remote machine to make sure Python 2.7 is available.
which python2.7 will let you know.
If it’s missing, use your package manager to install it.

On Ubuntu Xenial (16.0.4 LTS), sudo apt-get install -y python will do the trick.

Deploy a PyWPS Application

	Prepare

	Get the Playbook

	Customize Configuration

	Running your playbook locally

Note

You can safely try the installation using Vagrant [https://www.vagrantup.com/] or Docker. See Testing.

Prepare

You need a recent Ansible [https://www.ansible.com/] version (>=2.7) on your local client:

$ ansible --version
ansible 2.7.2

If you don’t have Ansible installed, then follow these instructions: Requirements.

Get the Playbook

Clone this playbook from GitHub:

$ git clone https://github.com/bird-house/ansible-wps-playbook.git
$ cd ansible-wps-playbook

Customize Configuration

Configure your PyWPS installation. See Configuration:

$ cp etc/sample-emu.yml custom.yml
$ vim custom.yml

Running your playbook locally

Warning

If your system has already a Supervisor [http://supervisord.org/] or a PostgreSQL [https://www.postgresql.org/] installation, please remove them manually.

Warning

Make sure your Ansible directory is not world-readable, otherwise the ansible.cfg file will not be read.
See Ansible Documentation [https://docs.ansible.com/ansible/devel/reference_appendices/config.html#cfg-in-world-writable-dir].

If not already done (see Requirements), fetch required roles/recipes from ansible-galaxy:

$ ansible-galaxy -p roles -r requirements.yml install

Run your playbook locally:

$ ansible-playbook -c local -i hosts playbook.yml

Note

You can also use the shortcut to run both:

$ make play

For remote deployment follow the instructions in the next section Live host deployment.

Live host deployment

Creating a host file

You’ll need to tell Ansible how to connect to your host.
There are multiple ways to do this. The easiest for our purposes is to create a manifest file.

Create a file with a name like myhost.cfg that follows the pattern:

wps.demo ansible_ssh_user=vagrant ansible_ssh_host=192.168.128.100 ansible_ssh_port=22

You may leave off the ansible_ssh_host setting if the hostname is real.
However, when doing early provisioning, it’s often not available.
ansible_ssh_port is only required if you want to use a non-standard ssh port.
ansible_ssh_user should be the login id on the remote machine.
That user must have sudo rights.

Running your playbook

$ ansible-playbook --ask-become-pass -i myhost.cfg playbook.yml

The --ask-become-pass option instructs Ansible to ask for your user password when it uses sudo for provisioning.
It’s not required if the remote user has password-less sudo rights.

Configuration

	Edit custom.yml

	Use Conda to build identical environments

	Use sqlite Database

	Use PostgreSQL Database installed by playbook

	Use external PostgreSQL Database

	Install multiple PyWPS applications

	Use HTTPS with Nginx

	Extend PyWPS configuration

	Use WPS with load-balancer configuration

Edit custom.yml

You need to customize the Ansible [https://www.ansible.com/] deployment configuration to install your PyWPS service.
Create a custom.yml configuration and overwrite any of the variables found in group_vars/all.
There are some prepared sample configurations etc/sample-*.yml for specific deployments.
Copy one of those to get started.

You can also add your custom configurations to the etc/ folder to stay away from Git control:

$ cp etc/sample-emu.yml etc/custom-emu.yml
$ vim etc/custom-emu.yml
$ ln -s etc/custom-emu.yml custom.yml

Use Conda to build identical environments

You can use Conda specification files to build identical environments [https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#building-identical-conda-environments].
The WPS service needs to have a specification file, spec-file.txt, in its top level folder.
You can set the following option in your custom.yml:

conda_env_use_spec: true

See an example in etc/sample-emu-with-conda-spec.yml.

Warning

This is option is currently enabled for all configured WPS services.

Note

Conda spec files will work only on a specifc OS, in our case Linux.

Use sqlite Database

You can use a SQLite [https://sqlite.org/index.html] database with the following settings:

db_install_postgresql: false
db_install_sqlite: true

See an example in etc/sample-sqlite.yml.

Use PostgreSQL Database installed by playbook

By default the playbook will install a PostgreSQL [https://www.postgresql.org/] database.
You can customize the installation. For example you can configure a database user:

db_user: dbuser
db_password: dbuser

See an example in etc/sample-postgres.yml.

Warning

When you change the database user for an existing database
the table owners will not be updated.

Use external PostgreSQL Database

If you want to use an existing database you can skip the database installation by setting the variable:

db_install_postgresql: false

You need to configure then the database connection string to your external database:

wps_database: "postgresql+psycopg2://user:password@host:5432/pywps"

See an example in etc/sample-postgres.yml.

Install multiple PyWPS applications

You can install several PyWPS applications with a single Ansible run.
See etc/sample-multiple.yml configuration as example.

You can also configure a shared file-server for outputs.
See etc/sample-multiple-with-shared-fileserver.yml.

Use HTTPS with Nginx

You can enable HTTPS for the Nginx service by setting the variable:

wps_enable_https: true

See etc/sample-certs.yml configuration as example.

By default it generates a self-signed certificate automatically.

You can also provide your own certificate by setting the following variables:

ssl_certs_local_privkey_path: '/path/to/example.com.key'
ssl_certs_local_cert_path: '/path/to/example.com.pem'

Read the ssl-certs role [https://galaxy.ansible.com/jdauphant/ssl-certs] documentation for details.

Extend PyWPS configuration

This Ansible playbook has its own template for a PyWPS configuration file.
This template does not cover all options and you might want to extend it for additional configurations.
You can extend the pywps.cfg configuration with the extra_config option. Here is an example:

server_name: demowps
wps_services:
 - name: demo
 hostname: "{{ server_name }}"
 port: 5000
 extra_config: |
 [data]
 cache_path = /tmp/cache

Use WPS with load-balancer configuration

When you use a load-balancing configuration for your WPS service, your service needs
to use the external hostname used in the load-balancer. The WPS output service still
needs to use the internal hostname for the output URL.

Please see: etc/sample-cp4cds_load-balancer.yml.

Testing

	Test Ansible with Vagrant

	Install Vagrant

	Run Vagrant

	Try WPS requests

	Try other OS

	Alternative: use Vagrant without provisioning

Test Ansible with Vagrant

Install Vagrant

You need to install Vagrant [https://www.vagrantup.com/]. See the following links for details:

	https://docs.ansible.com/ansible/latest/scenario_guides/guide_vagrant.html

	https://www.vagrantup.com/intro/getting-started/index.html

	https://blog.scriptmyjob.com/creating-an-ansible-testing-environment-using-vagrant-on-macos/

In short, you can install Vagrant on macOS with Homebrew [https://brew.sh/]
(and Homebrew Cask [https://caskroom.github.io/]):

$ brew cask install virtualbox
$ brew cask install vagrant

You need Ansible locally installed:

$ conda install -c conda-forge ansible
OR
$ brew install ansible # macOS only

Install Ansible roles:

$ ansible-galaxy install -p roles -r requirements.yml --ignore-errors

Run Vagrant

Use Vagrant config:

$ ln -s etc/sample-vagrant.yml custom.yml

Initial setup:

$ vagrant up

Provision with Ansible again:

$ vagrant provision

Login with SSH:

$ vagrant ssh

Run Ansible manually:

$ ansible-playbook -i .vagrant/provisioners/ansible/inventory/vagrant_ansible_inventory playbook.yml

Remove VMs:

$ vagrant destroy -f

Try WPS requests

Run a WPS GetCapabilites request:

$ curl -s -o caps.xml \
 "http://192.168.128.100:5000/wps?service=WPS&request=GetCapabilities"
$ less caps.xml

Try other OS

Configure Vagrantfile with another Bento Box [https://app.vagrantup.com/bento]:

wps.vm.box = "bento/ubuntu-18.04"

Alternative: use Vagrant without provisioning

Use Vagrant without provisioning and just to setup a new VM:

$ vagrant destroy -f # remove previous VM
$ vagrant up --no-provision # setup new VM
$ vagrant ssh # ssh into VM

Run the installation manually now:

vagrant> sudo yum install git
vagrant> cd /vagrant
vagrant> sudo yum install epel-release
vagrant> sudo yum install ansible
vagrant> ln -s etc/sample-vagrant.yml custom.yml
vagrant> ansible-galaxy install -r requirements.yml
vagrant> ansible-playbook -c local -i hosts playbook.yml

Examples

	Install Emu/PyWPS on localhost

	Test Emu WPS service

	Install Slurm cluster

	Install Emu/PyWPS on cluster

	Test Emu WPS service

	Install the rook/PyWPS for subsetting on cluster

	Test rook WPS service

Install Emu/PyWPS on localhost

Use the WPS playbook:

https://github.com/bird-house/ansible-wps-playbook

Clone the playbook:

$ git clone https://github.com/bird-house/ansible-wps-playbook.git
$ cd ansible-wps-playbook

Optionally you can setup a Vagrant VM for testing:

$ vagrant up --no-provision
$ vagrant ssh
$ sudo yum install epel-release
$ sudo yum install ansible
$ cd /vagrant

Install Emu on localhost (or in Vagrant VM):

$ cp etc/sample-emu.yml custom.yml
$ ansible-playbook -c local -i hosts playbook.yml

This example is using the Emu WPS with simple test processes:

https://github.com/bird-house/emu

Test Emu WPS service

Test connection:

http://localhost:5000/wps?service=WPS&version=1.0.0&request=GetCapabilities

Run “hello” in sync mode:

http://localhost:5000/wps?service=WPS&version=1.0.0&request=Execute&identifier=hello&DataInputs=name=Stranger

Install Slurm cluster

Use this slurm playbook:

https://github.com/agstephens/slurm-playbook

Run playbook with Vagrant:

$ vagrant up
$ ANSIBLE_HOST_KEY_CHECKING=False ansible-playbook -u vagrant --private-key=~/.vagrant.d/insecure_private_key -i inventories/vagrant-cluster.yml playbook.yml

Login to slurm master node:

$ vagrant ssh slurmmaster

Run slurm test:

> sudo -i # become root
> squeue # to view the queue
> sbatch /root/hostname.sh # to run a job
> squeue # to see if it is running

Install Emu/PyWPS on cluster

Use the WPS playbook:

https://github.com/bird-house/ansible-wps-playbook

Install PyWPS into the same cluster as slurm:

$ cp etc/vagrant-cluster.yml custom.yml
$ ansible-playbook -u vagrant --private-key=~/.vagrant.d/insecure_private_key -i inventory/vagrant-cluster.yml playbook.yml

This example is using the Emu WPS with simple test processes:

https://github.com/bird-house/emu

Test Emu WPS service

Test connection:

http://192.168.50.44:5000/wps?service=WPS&version=1.0.0&request=GetCapabilities

Run “sleep” in async mode with scheduler:

http://192.168.50.44:5000/wps?service=WPS&version=1.0.0&request=Execute&identifier=sleep&storeExecuteResponse=true&status=true&DataInputs=delay=2

Install the rook/PyWPS for subsetting on cluster

This example is using the rook WPS with subsetting processes on climate model data:

https://github.com/roocs/rook

Installation is like before with slurm cluster but using a different config file:

$ cp etc/vagrant-cluster-with-rook.yml custom.yml
$ ansible-playbook -u vagrant --private-key=~/.vagrant.d/insecure_private_key -i inventory/vagrant-cluster.yml playbook.yml

In this example demo data is installed in a shared Vagrant folder .local/data:

https://github.com/roocs/mini-esgf-data

Test rook WPS service

Test connection:

http://192.168.50.44:5000/wps?service=WPS&version=1.0.0&request=GetCapabilities

Run “subset” in async mode with scheduler and default values:

http://192.168.50.44:5000/wps?service=WPS&version=1.0.0&request=Execute&identifier=subset&storeExecuteResponse=true&status=true

Changes

0.4.0 (2020-09-22)

Changes:

	added cleantempdir option (#107).

	skip epel setup when not used (#106).

	added demo mode for test data (#105).

	fixed local deployment (#103).

	added clean task (#102).

	added support for slurm cluster deployment (#99, #100, #101).

	use pip install for extra packages (#97, #98).

0.3.0 (2020-01-20)

Changes:

	Skipped Twitcher role (#91)

0.2.3 (2020-01-08)

Changes:

	Added Keycloak support for Twitcher (#87).

	Fixed SSL client verification (#86).

	Fixed postgres user config (#85).

	Don’t pin roles version (#84).

0.2.2 (2019-09-27)

Bucharest Release.

Changes:

	Initial twitcher support (#82, #76).

	Updated docs for DB config (#79).

	Support conda spec (#74).

	Fixes (#80, #81).

0.2.1 (2019-02-05)

Changes:

	Configure wps user with optional UID/GID (#56).

	Support for load-balancing configuration (#68).

	Added a flag wps_add_user to skip task “wps add user” (#64, #66).

	Using extra_config to extend the pywps configuration (#60, #62).

	Updated docs (#59).

	Several bug-fixes (#61, #65)

0.2.0 (2018-12-06)

Washington Release.

Changes:

	Fixed RedHad/CentOS 6 issues (#50, #49).

	Fixed CentOS 7 issue (#46).

	Support HTTPS (#30, #45).

	Fixed firewall issue (#39).

	Support output file-service used by multiple WPS (#37).

0.1.1 (2018-09-19)

Changes:

	Updated to latest version 2.0.2 of supervisor role (#31).

	Added support for CentOS 6.x (#34).

	PyWPS outputurl parameter is now configurable (#36).

0.1.0 (2018-09-05)

This is the first release of the Ansible playbook for PyWPS.

Features:

	Install PyWPS application with Nginx, Supervisor, Gunicorn and PostgreSQL.

	Configuration options can be overwritten using a custom.yml file.

	Allows the installation of multiple PyWPS applications.

	PostgreSQL installation is optional.

Ansible Hints

Show local variables and facts:

$ ansible -m setup -c local localhost

Skip specific tasks for quick tests, for example skip conda tasks:

$ ansible-playbook -c local --skip-tags=conda -i hosts playbook.yml

Links

Used roles:

	miniconda: https://galaxy.ansible.com/andrewrothstein/miniconda/

	nginx: https://galaxy.ansible.com/geerlingguy/nginx

	supervisor: https://galaxy.ansible.com/geerlingguy/supervisor

	postgresql: https://galaxy.ansible.com/anxs/postgresql

	ssl-certs: https://galaxy.ansible.com/jdauphant/ssl-certs

Alternative roles:

	postgresql: https://galaxy.ansible.com/geerlingguy/postgresql

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 PyWPS Ansible Playbook

 		
 Requirements

 		
 Target Server

 		
 Supported platforms

 		
 SSH access; sudo

 		
 Local setup

 		
 Quick setup

 		
 MacOS

 		
 Conda

 		
 Ansible role requirements

 		
 Remote setup

 		
 Deploy a PyWPS Application

 		
 Prepare

 		
 Get the Playbook

 		
 Customize Configuration

 		
 Running your playbook locally

 		
 Live host deployment

 		
 Creating a host file

 		
 Running your playbook

 		
 Configuration

 		
 Edit custom.yml

 		
 Use Conda to build identical environments

 		
 Use sqlite Database

 		
 Use PostgreSQL Database installed by playbook

 		
 Use external PostgreSQL Database

 		
 Install multiple PyWPS applications

 		
 Use HTTPS with Nginx

 		
 Extend PyWPS configuration

 		
 Use WPS with load-balancer configuration

 		
 Testing

 		
 Test Ansible with Vagrant

 		
 Install Vagrant

 		
 Run Vagrant

 		
 Try WPS requests

 		
 Try other OS

 		
 Alternative: use Vagrant without provisioning

 		
 Examples

 		
 Install Emu/PyWPS on localhost

 		
 Test Emu WPS service

 		
 Install Slurm cluster

 		
 Install Emu/PyWPS on cluster

 		
 Test Emu WPS service

 		
 Install the rook/PyWPS for subsetting on cluster

 		
 Test rook WPS service

 		
 Changes

 		
 0.4.0 (2020-09-22)

 		
 0.3.0 (2020-01-20)

 		
 0.2.3 (2020-01-08)

 		
 0.2.2 (2019-09-27)

 		
 0.2.1 (2019-02-05)

 		
 0.2.0 (2018-12-06)

 		
 0.1.1 (2018-09-19)

 		
 0.1.0 (2018-09-05)

 		
 Ansible Hints

 		
 Links

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

